A Novel Concept of Reversing Neuromuscular Block: Chemical Encapsulation of Rocuronium Bromide by a Cyclodextrin-Based Synthetic Host The discovery of Org 25969 is the result of teamwork with contributions from a number of scientists both inside Organon and outside the company. We would like in particular to acknowledge the following scientists for their invaluable contributions: E. Hutchinson, D. Stevenson, R. Roy, and J. Pick for scaling-up the synthesis; F. Hope, S. Miller, and R. Mason for various in vitro and in vivo pharmacological testing; R. Watson, B. Montgomery, P. Desmond, and A. Osprey for all their analytical effort; and R. McGuire and J. Mestres for graphical presentation of the X-ray crystal structure of the Org 25969–rocuronium complex (Figure 3). We would also like to thank Prof. A. Cooper of Glasgow University who has critically reproduced our calorimetry data of Org 25969–rocuronium complexation (Figure 2).

Author(s):  
Anton Bom ◽  
Mark Bradley ◽  
Ken Cameron ◽  
John K. Clark ◽  
Jan van Egmond ◽  
...  
Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


1986 ◽  
Vol 250 (2) ◽  
pp. F302-F307 ◽  
Author(s):  
J. M. Burnell ◽  
C. Liu ◽  
A. G. Miller ◽  
E. Teubner

To study the effects of bicarbonate and magnesium on bone, mild acidosis and/or hypermagnesemia were produced in growing rats by feeding ammonium chloride and/or magnesium sulfate. Bone composition, quantitative histomorphometry, and mineral x-ray diffraction (XRD) characteristics were measured after 6 wk of treatment. The results demonstrated that both acidosis (decreased HCO3) and hypermagnesemia inhibited periosteal bone formation, and, when combined, results were summative; and the previously observed in vitro role of HCO3- and Mg2+ as inhibitors of crystal growth were confirmed in vivo. XRD measurements demonstrated that decreased plasma HCO3 resulted in larger crystals and increased Mg resulted in smaller crystals. However, the combined XRD effects of acidosis and hypermagnesemia resembled acidosis alone. It is postulated that the final composition and crystal structure of bone are strongly influenced by HCO3- and Mg2+, and the effects are mediated by the combined influence on both osteoblastic bone formation and the growth of hydroxyapatite.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2572 ◽  
Author(s):  
Ya-Na Wu ◽  
Dar-Bin Shieh ◽  
Li-Xing Yang ◽  
Hwo-Shuenn Sheu ◽  
Rongkun Thordarson ◽  
...  

Finding a cancer-selective drug that avoids damaging healthy cells and organs is a holy grail in medical research. In our previous studies, gold-coated iron (Fe@Au) nanoparticles showed cancer selective anti-cancer properties in vitro and in vivo but were found to gradually lose that activity with storage or "ageing.” To determine the reasons for this diminished anti-cancer activity, we examined Fe@Au nanoparticles at different preparation and storage stages by means of transmission electron microscopy combined with and energy-dispersive X-ray spectroscopy, along with X-ray diffraction analysis and cell viability tests. We found that dried and reconstituted Fe@Au nanoparticles, or Fe@Au nanoparticles within cells, decompose into irregular fragments of γ-F2O3 and agglomerated gold clumps. These changes cause the loss of the particles’ anti-cancer effects. However, we identified that the anti-cancer properties of Fe@Au nanoparticles can be well preserved under argon or, better still, liquid nitrogen storage for six months and at least one year, respectively.


2021 ◽  
Author(s):  
Kristin Roseth Aass ◽  
Robin Mjelle ◽  
Martin H. Kastnes ◽  
Synne S. Tryggestad ◽  
Luca M. van den Brink ◽  
...  

AbstractIL-32 is a non-classical cytokine expressed in cancers, inflammatory diseases and infections. IL-32 can have both extracellular and intracellular functions, and its receptor is not identified. We here demonstrate that endogenously expressed, intracellular IL-32 binds to components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in malignant plasma cells significantly reduced survival and proliferation in vitro and in vivo. High throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that loss of IL-32 leads to profound perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors and citrate, indicative of reduced mitochondrial function. IL-32 is expressed in a subgroup of multiple myeloma patients with an inferior prognosis. Primary myeloma cells expressing IL-32 were characterized by a plasma cell gene signature associated with immune activation, proliferation and oxidative phosphorylation. We propose a novel concept for regulation of metabolism by an intracellular cytokine and identify IL-32 as an endogenous growth and survival factor for malignant plasma cells. IL-32 is a potential prognostic biomarker and a treatment target in multiple myeloma.


1997 ◽  
Vol 51 (5) ◽  
pp. 312-317 ◽  
Author(s):  
CD Economos ◽  
ME Nelson ◽  
MA Fiatarone ◽  
GE Dallal ◽  
SB Heymsfield ◽  
...  
Keyword(s):  

Nanoscale ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 2855-2860 ◽  
Author(s):  
Haibo Wang ◽  
Wei Lu ◽  
Tianmei Zeng ◽  
Zhigao Yi ◽  
Ling Rao ◽  
...  

A new type of multi-functional NaErF4 nanoprobe with enhanced red upconversion emission was developed and used for in vitro cell, in vivo X-ray and T2-weighted magnetic resonance imaging for the first time.


2008 ◽  
Vol 23 (4) ◽  
pp. 343-347 ◽  
Author(s):  
Angélica de Fátima de Assunção Braga ◽  
Caroline Coutinho de Barcelos ◽  
Franklin Sarmento da Silva Braga ◽  
Samanta Cristina Antoniassi Fernandes ◽  
Yoko Oshima Franco ◽  
...  

PURPOSE: To evaluate in vitro and in vivo neuromuscular blockade produced by rocuronium in rats treated with Phenobarbital and to determine cytochrome P450 and cytochrome b5 concentrations in hepatic microsomes. METHODS: Thirty rats were included in the study and distributed into 6 groups of 5 animals each. Rats were treated for seven days with phenobarbital (20 mg/kg) and the following parameters were evaluated: 1) the amplitude of muscle response in the preparation of rats exposed to phenobarbital; 2) rocuronium effect on rat preparation exposed or not to phenobarbital; 3) concentrations of cytochrome P450 and cytochrome b5 in hepatic microsomes isolated from rats exposed or not to phenobarbital. The concentration and dose of rocuronium used in vitro and in vivo experiments were 4 µg/mL and 0,6 mg/kg, respectively. RESULTS: Phenobarbital in vitro and in vivo did not alter the amplitude of muscle response. The neuromuscular blockade in vitro produced by rocuronium was significantly different (p=0.019) between exposed (20%) and not exposed (60%) rats; the blockade in vivo was significantly greater (p=0.0081) in treated rats (93.4%). The enzymatic concentrations were significantly greater in rats exposed to phenobarbital. CONCLUSIONS: Phenobarbital alone did not compromise neuromuscular transmission. It produced enzymatic induction, and neuromuscular blockade in vivo produced by rocuronium was potentiated by phenobarbital.


Sign in / Sign up

Export Citation Format

Share Document